Note

An Interesting Set of Simultaneous, Nonlinear Equations

Introduction

Figure 1 shows a typical oceanographic situation in which two-layer flow occurs between two water bodies connected by a channel which contains a sill.

The equations which describe this situation can be written in normalized form as:

$$
\begin{align*}
u_{1}^{2} / y_{1}+u_{2}^{2} / y_{2} & =1 \tag{i}\\
y_{1}+y_{2} & =1 \tag{2}\\
u_{r}^{2} & =1 \tag{3}\\
u_{1} y_{1}+u_{2} y_{2} & =U_{0} \tag{4}\\
u_{1} y_{1} & =u_{r} y_{r} B \tag{5}\\
y_{r}+u_{r}^{2} 2 & \left.=y_{1}+\left(u_{1}^{2}-u_{2}^{2}\right)\right)_{2} .
\end{align*}
$$

Here B is the width ratio and U_{0} is defined to be the barotropic, or total, flow. The layer depth and velocity variables, y and u, are defined in Fig. la.

Methods of Solution

Some algebraic manipulation of Eqs. (1)-(6) easily eliminates four of the variables and produces:

$$
u_{1}^{2}\left(1-y_{1}\right)+y_{1}\left(2 y_{1}+u_{1}^{2}-3\left(u_{1} y_{1} / B\right)^{2 / 3}\right)-y_{1}\left(1-y_{1}\right)=0
$$

and

$$
\left(U_{0}-u_{1} y_{1}\right)^{2}-\left(1-y_{1}\right)^{2}\left(2 y_{1}+u_{1}^{2}-3\left(u_{1} y_{1} b\right)^{2 ; 3}\right)=0 .
$$

A straightforward application of a 2-dimensional Newton-Raphson process yields the curves shown in Fig. 2. The right-hand end points of the curves, obtained by this method and marked with a "-", are quite irregular. Physically, the curves should continue to meet the U_{0} axis, their failure to do so is caused by round-off noise in the numerical process.

$$
B=\frac{b_{r}}{b}
$$

Fig. 1. Vertical section and plan view of a sill with constriction.

SILL FLOW B= 1...9. .8. .7. .6. .5. .4. .3. .2, 1

vo
FIG. 2. u_{1} and u_{2} vs. U_{0} for a range of values of B. The - marks the end of that portion of the u_{2} curve obtainable with the first set of equations.

Consider the somewhat simpler eliminants:

$$
u_{1}^{2}-3 y_{1}^{5 / 3}\left(u_{1} / B\right)^{2 \cdot 3}+y_{1}\left(3 y_{1}-1\right)=0
$$

and

$$
u_{1}^{2} / y_{1}+\left(U_{0}-u_{1} y_{1}\right)^{2}\left(1-y_{1}\right)^{3}=1 .
$$

The last equation easily reduces to a quadratic whose roots are

$$
\begin{equation*}
u_{1}=\left[U_{0} y_{1}^{2} \pm\left(1-y_{1}\right)\left(y_{1}\left(1-y_{1}\right)\left(1-3 y_{1}+3 y_{1}^{2}-L_{0}^{2}\right)^{1^{2}}\right] /\left(1-3 y_{1}+3 y_{1}^{2}\right)\right. \tag{8}
\end{equation*}
$$

Investigation of the Roots

Equation (7) is easily solved numerically. However, to investigate root locations, the loci of u_{1} vs. y_{1} from (7) and (8) for U_{0} in the range -1 to +1 and for B in the range 0.1 to +1 are plotted. These loci (Fig. 3) reveal the richness of the root struccure. The curves for negative U_{0} are simply the reflections of those for positive ℓ_{0} in the y, axis so that, to avoid confusion, the reflections of the $B=$ const. curves in the same axis have been plotted. The two points of confluence of the $B=$ const. curves at $(0,0)$ and $\left(0, \frac{1}{3}\right)$ are clearly shown.

Generation of u_{1} And u_{2} Curves

Oceanographers are interested in curves (Fig. 2) relating u_{1} and u_{2} to u_{0} for constant values of B. To produce these curves compute, for each U_{0} and B in the range, starting with $y_{1}=-1$:

1. u_{1} from (8) for y_{1},
2. the value of (7),
3. y_{1} increased by a suitable interval $d y_{1}$.

When the value of (7) changes sign, a root had been trapped between the two values of y_{1}. The binary partition method [3] is then used to define y_{1} to the required accuracy.

The root y_{1} being found, the corresponding value of i_{1} is plotted as well as the value of u_{2} derived from

$$
\begin{equation*}
u_{2}=\left(U_{0}-u_{1} y_{1}\right) /\left(1-y_{1}\right) \tag{9}
\end{equation*}
$$

The resulting curves are shown in Fig. 2. Because U_{0} proceeds in steps the actual

Fig. 3. $B=$ constant and $U_{0}=$ constant loci. The intersections give the positions of the roots.
end points for u_{2} on the U_{0} axis will not, generally, appear. To complete the curves the relationship:

$$
B=U_{0} /\left(\left(2+U_{0}^{2}\right) / 3\right)^{3: 2}
$$

easily derived from (2), (4), (5), and (6) when $y_{2}=0$ defines the end points for positive U_{0}. For negative U_{0} the confluent points have $y_{1}=\frac{1}{3}$ from (7) and thus $U_{0}=\left(\frac{2}{3}\right)^{3 / 2}$ from (7) and $u_{2}=\left(\frac{2}{3}\right)^{1 / 2}$ from (9).

The robust binary partition method can be replaced easily by a more rapidly convergent one if desired. A program that is well suited to operation on any conventional microcomputer which has a curve plotter and runs BASIC is available from the authors.

Acknowledgments

The authors wish to express their thanks to Dr. David Farmer for bringing this interesting problem to their attention, and to Mrs. Grace Kamitakahara-King for some of the graphical outputs.

References

1 H. Stommel and H. G. Farmer, J. Marine Res. 11, 205-214 (1952); 12, 13-20 (1953).
2. L. Armi and D. M. Farmer, J. Fluid Mech., in press.
3. A. D. Bоотн, Computers and Automation 5, 20 (1956).

Received August 28, 1985; revised November 26, 1985

Andmew D. Booter
Institute of Ocean Sciences.
P.O. Box 6000 , 9860 West Saanich Road.

Sydney, British Columbia, Canada V'81 4BZ

Ian J. M. Bootec
Department of Physics,
Simon Fraser Eniversity,
Burnaby, Britush Columbia, Canada

