Note

An Interesting Set of Simultaneous, Nonlinear Equations

INTRODUCTION

Figure 1 shows a typical oceanographic situation in which two-layer flow occurs between two water bodies connected by a channel which contains a sill.

The equations which describe this situation can be written in normalized form as:

$$u_1^2 / y_1 + u_2^2 / y_2 = 1 \tag{1}$$

$$y_1 + y_2 = 1$$
 (2)

$$u_r^2 = 1 \tag{3}$$

$$u_1 y_1 + u_2 y_2 = U_0 \tag{4}$$

$$u_1 y_1 = u_r y_r B \tag{5}$$

$$y_r + u_r^2/2 = y_1 + (u_1^2 - u_2^2)/2.$$
 (6)

Here B is the width ratio and U_0 is defined to be the barotropic, or total, flow. The layer depth and velocity variables, y and u, are defined in Fig. 1a.

METHODS OF SOLUTION

Some algebraic manipulation of Eqs. (1)-(6) easily eliminates four of the variables and produces:

$$u_1^2(1-y_1) + y_1(2y_1 + u_1^2 - 3(u_1 y_1/B)^{2/3}) - y_1(1-y_1) = 0$$

and

$$(U_0 - u_1 y_1)^2 - (1 - y_1)^2 (2y_1 + u_1^2 - 3(u_1 y_1/b)^{2/3}) = 0.$$

A straightforward application of a 2-dimensional Newton-Raphson process yields the curves shown in Fig. 2. The right-hand end points of the curves, obtained by this method and marked with a "—", are quite irregular. Physically, the curves should continue to meet the U_0 axis, their failure to do so is caused by round-off noise in the numerical process.

FIG. 1. Vertical section and plan view of a sill with constriction.

SILL FLOW B= 1., .9, .8, .7, .6, .5, .4, .3, .2, .1

FIG. 2. u_1 and u_2 vs. U_0 for a range of values of *B*. The — marks the end of that portion of the u_2 curve obtainable with the first set of equations.

Consider the somewhat simpler eliminants:

$$u_1^2 - 3y_1^{5/3}(u_1/B)^{2/3} + y_1(3y_1 - 1) = 0$$
⁽⁷⁾

and

$$u_1^2/y_1 + (U_0 - u_1 y_1)^2/(1 - y_1)^3 = 1.$$

The last equation easily reduces to a quadratic whose roots are

$$u_{1} = \left[U_{0} y_{1}^{2} \pm (1 - y_{1}) \left\{ y_{1} (1 - y_{1}) (1 - 3y_{1} + 3y_{1}^{2} - U_{0}^{2}) \right\}^{1/2} \right] / (1 - 3y_{1} + 3y_{1}^{2}).$$
(8)

INVESTIGATION OF THE ROOTS

Equation (7) is easily solved numerically. However, to investigate root locations, the loci of u_1 vs. y_1 from (7) and (8) for U_0 in the range -1 to +1 and for B in the range 0.1 to +1 are plotted. These loci (Fig. 3) reveal the richness of the root structure. The curves for negative U_0 are simply the reflections of those for positive U_0 in the y_1 axis so that, to avoid confusion, the reflections of the B = const. curves in the same axis have been plotted. The two points of confluence of the B = const. curves at (0, 0) and $(0, \frac{1}{3})$ are clearly shown.

Generation of u_1 and u_2 Curves

Oceanographers are interested in curves (Fig. 2) relating u_1 and u_2 to U_0 for constant values of *B*. To produce these curves compute, for each U_0 and *B* in the range, starting with $y_1 = -1$:

- 1. u_1 from (8) for y_1 ,
- 2. the value of (7),
- 3. y_1 increased by a suitable interval dy_1 .

When the value of (7) changes sign, a root had been trapped between the two values of y_1 . The binary partition method [3] is then used to define y_1 to the required accuracy.

The root y_1 being found, the corresponding value of u_1 is plotted as well as the value of u_2 derived from

$$u_2 = (U_0 - u_1 y_1) / (1 - y_1).$$
(9)

The resulting curves are shown in Fig. 2. Because U_0 proceeds in steps the actual

FIG. 3. B = constant and $U_0 = \text{constant}$ loci. The intersections give the positions of the roots.

end points for u_2 on the U_0 axis will not, generally, appear. To complete the curves the relationship:

$$B = U_0 / ((2 + U_0^2)/3)^{3/2},$$

easily derived from (2), (4), (5), and (6) when $y_2 = 0$ defines the end points for positive U_0 . For negative U_0 the confluent points have $y_1 = \frac{1}{3}$ from (7) and thus $U_0 = (\frac{2}{3})^{3/2}$ from (7) and $u_2 = (\frac{2}{3})^{1/2}$ from (9).

The robust binary partition method can be replaced easily by a more rapidly convergent one if desired. A program that is well suited to operation on any conventional microcomputer which has a curve plotter and runs BASIC is available from the authors.

SIMULTANEOUS NONLINEAR EQUATIONS

ACKNOWLEDGMENTS

The authors wish to express their thanks to Dr. David Farmer for bringing this interesting problem to their attention, and to Mrs. Grace Kamitakahara-King for some of the graphical outputs.

REFERENCES

1 H. STOMMEL AND H. G. FARMER, J. Marine Res. 11, 205-214 (1952); 12, 13-20 (1953).

2. L. ARMI AND D. M. FARMER, J. Fluid Mech., in press.

3. A. D. BOOTH, Computers and Automation 5, 20 (1956).

RECEIVED August 28, 1985; REVISED November 26, 1985

ANDREW D. BOOTH

Institute of Ocean Sciences. P.O. Box 6000, 9860 West Saanich Road. Sydney, British Columbia, Canada V8L 4B2

Ian J. M. Booth

Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada